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Shock-induced demagnetization produced by strain-induced anisotropy is considered in cubic 
Single-crystal ferromagnetic material. Equilibrium thermodynamics , along with established 
methods of ferromagnetic domain theory, are used to predict energy expresssions, magne­
tization curves, and domain structure in the magnetic material behind the shock wave. In 
particular , specific expressions for the exchange energy and magnetic sell-energy are 
obtained. They are predicted to increase as the fourth root of the strain and are small 
compared to the induced anisotropy energy in the region of large elastic and plastic strain. 
Calculations are made for yttrium iron garnet . 

I. INTRODUCTION 

When magnetic material is subject to a strong shock 
wave and at the same time biased by an external mag­
netic field applied parallel to the shock front, a reduc­
tion in magnetization is observed. By this method shock 
waves are used to study the magnetic behavior of mate­
rials subj ect to extreme states of stress. In ferromag­
netic material three mechanisms have been identified 
as contributing to shock-induced demagnetization. 
These are first-order crystallographic phase transi­
tions in which total demagnetization is observed to oc­
cur,1,2 second-order phase transitions between ordered 
and disordered magnetic states, 3,4 and shock-induced 
anisotropy in which nonhydrostatic strains along with 
magnetoelastic properties of the material produce de­
viations from magnetic saturation. 2,5-7 This paper is 
concerned with the last. 

The problem of shock-induced anisotropy is best under­
stood by considering the model used to describe it. Re­
ferring to Fig. 1, consider an infinite half-space of 
ferromagnetiC material contained in the region x> O. 
Planar impact at the interface x=O creates a plane 
shock wave S propagating in the positive x direction. 
This creates in the region behind the shock wave an in­
finite slab of ferromagnetic material subject to a state 
of uniform uniaxial strain. 8 During and following shock 
initiation, the ferromagnetic material is subject to a 
transverse magnetic field He sufficient to induce mag­
netic saturation in the material in front of the propagat­
ing shock wave. Behind the shock wave a reduction in 
magnetization occurs. This is the observed shock-in­
duced demagnetization and is, in the present work, a 
consequence of the magnetoelastic properties of the 
material. 

Theoretical consideration of shock demagnetization pro­
duced by shock-induced anisotropy parallels methods 
used in predicting other ferromagnetic behavior. This 
consists of writing an energy expreSSion sufficient to 
describe the magnetic and mechanical properties of the 
ferromagnetic slab behind the shock wave and minimiz­
ing this energy with respect to some parameter which 
determines the magnitude of transverse magnetization 
in the slab. By this method the equilibrium magnetiza­
tion and, hence, shock demagnetization, is determined. 
These general statements will be more fully described 

in Secs. IT-VI. Early work on the shock-induced an­
isotropy effect considered a total energy conSisting of 
the interaction energy EH = - He' Ms along with the mag­
netoelastic energy Em. and the crystal anisotropy en­
ergy E

k
.2,5,7 This is sufficient to predict shock-induced 

demagnetization. These early papers represent a sig­
nificant contribution to the understanding of shock-in­
duced anisotropy. They, however, ignored energy 
terms which are known to significantly contribute to 
ferromagnetic behavior, viz., the exchange energy and 
the demagnetizing energy. These energy terms were 
considered in a micromagnetic theoretical treatment of 
shock-induced anisotropy. 9 However, micromagnetic 
theory is, at present, mathematically cumbersome and 
limited in application. The gap between earlier work 
and the sophisticated methods of micromagnetic theory 
is spanned by the ferromagnetic domain theory. Its 
concepts are well developed in the literature. 10 The 
primary objective of the present work is to apply the 
established methods of ferromagnetic domain theory to 
the problem of shock demagnetization produced by 
shock-induced anisotropy. Specific objectives are as 
follows: The magnetic domain structure expected to 
nucleate after shock passage will be predicted. A total 
magnetic energy expreSSion will be obtained. In partic­
ular, explicit expressions for the exchange and demag­
netization energy will be determined. The error result­
ing from ignoring these terms, as has been done in pre­
vious work, will also be determined. Magnetization 
curves for the material behind the shock wave will be 
obtained and conditions necessary for shock demagneti­
zation to occur ascertained. 

The present work will be restricted to the shock-in­
duced anisotropy effect in cubic Single-crystal ferro­
magnetiC material. This is preparatory to understanding 
the similar effect in poly crystalline material, which is 
the topic of the following paper. 11 The region of strain 
considered in this work will be in the elastic range but 
at strains which are a sizable fraction of the Hugoniot 
elastic limit of the material. This is consistent with the 
order of strain obtained in earlier magnetic shock 
work. 2,5,6 Extension to the plastic region requires an 
additional assumption. 12 

This article is directed to workers in the field of shock­
wave physics or people interested in the magnetic re-
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FIG. 1. Geometry for shock-induced demagnetization. Infinite 
half-space of ferromagnetic material in region x > O. Uniaxial 
strain in region behind the shock S. Applied field He in trans­
verse direction. Reduction in magnetization occurs across the 
shock front. 

sponse of material to dynamic loading. To the special­
ist in magnetics, for whom the methods of ferromag­
netic domain theory are well known, some of the con­
cepts will be self-evident. 

Presentation of this article is in the following order: 
The various energy terms required in the analysis are 
defined in Sec. II. This section also includes a discus­
sion of the induced anisotropy effect. A common mis­
conception has held that within the validity of conven­
tional first-order magnetoelastic theory, ignoring 
crystal anisotropy energy, the axis of uniaxial strain 
defines an easy or hard direction of magnetization. 
This is not true for arbitrary crystal axis orientation 
with respect to the axis of uniaxial strain. An interest­
ing consequence of this is that total shock-induced de­
magnetization is not expected, regardless of the mag­
nitude of strain. In Sec. m, a ferromagnetic domain­
theory analysis is presented for the shock-induced an­
isotropy effect. In Sec. IV, magnetization curves and 
conditions for shock demagnetization are determined. 
The results are applied to yttrium iron garnet in Sec. 
V and discussed in terms of relative contributions of 
the various magnetic energy expressions to the shock­
induced anisotropy effect. Experimental shock demag­
netization results on poly crystalline YIG are presented 
in the following article. 11 

n. THERMODYNAMIC ENERGY 

Thermodynamics of a rigid ferromagnet are used to de­
scribe the shocked material. 13 A rigid ferromagnet is a 
thermodynamic system for which the functional depen­
dence of the energy E(S, M I , elJ) is reduced to the de­
pendence E(S, M f ) by maintaining the state of strain ell 

constant. MI is the magnetization and S is the entropy. 
A rigid ferromagnet implies that each lattice point is 
stationary and is not subject to motion by the forces 
present. The strain ell is maintained constant by the 
inertia of the material after passage of the shock wave 
and will remain so until relieved by perturbing waves 
(a problem only when finite boundaries are consid­
ered).14 

A total thermodynamic energy expression sufficient for 
a phenomenological description of a rigid anisotropic 
ferromagnet is given by 

E=EH+Ed +E",,+EK+Eme • (1) 

Each term will be identified briefly. Complete devel­
opments can be found in many excellent treatments in 
the literature .10,13,15,16 The elastic energy is neglected 
in this expression. A function of strain, only it will be 
constant in a rigid ferromagnet. 

The first terms is 

(2) 

This is the interaction energy of the magnetic material 
in the external applied field He' 

The second term is 

(3) 

This is the self-energy or demagnetizing energy of the 
magnetic system. Hd is the demagnetizing field and 
originates from magnetic surface and volume poles. 
This energy is intrinsically positive. Domain structure 
in ferromagnetic material occurs in an attempt to re­
duce the demagnetizing energy. 

The third term is the ferromagnetic exchange energy. 
The magnetization gradients are found to be adequate 
thermodynamic variables for a phenomenological de­
scription of this energy. A quadratic form 
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FIG. 2. (a) Model for platelike domain structure perpendicular 
to the applied field. (h) Model for platelike domain structure 
parallel to the applied field . (c) Model for needle-shaped do­
main structure oriented along axis of uniaxial strain. Polar 
angles define direction of magnetization during transition 
through domain wall. 
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FIG. 3. Domain-wall ener gy as a function of 9. ~corresponds 
to walls shown in Fig. 2(a). at, corresponds to walls shown in 
Fig. 2(b). 

is usually sufficient. The O! x's are the direction cosines 
of the magnetization vector. That is, M K=Mp K' where 
Ms is the saturation magnetization of the ferromagnetic 
material. For cubic symmetry, this expression re­
duces to 

E.x =A[(VO!l)2 + (V0!2)2 + (VO!s)2], 

where A is the exchange constant. 

(4) 

The fourth term is the crystalline anisotropy energy. 
From conventional magnetoelastic theory, it is given by 

EK =KllklO!jO! JO! kO! I' 

For cubic symmetry, it becomes 

(5) 

In this paper, interest lies in the shock-induced anisot­
ropy. In shock-wave studies, strains in the large elas­
tic and plastic regions are obtained. 12 For many mag­
netic materials, the crystalline anisotropy energy is 
10-30 times smaller than the induced anisotropy energy 
in this strain region. For this reason the crystalline 
anisotropy will be ignored. 

The last term is the magnetoelastic energy. From con­
ventional magnetoelastic theory, it is given by 

Em. = bjJklejJO! kO!" (6) 

where bjJkl is the fourth-rank magnetoelastic tensor. 
For cubic symmetry, this becomes 

Em. = b1 (O!~ell + 0!~e22 + O!;ess ) 

(7) 

The magnetoelastic energy is of primary interest in the 
shock-induced anisotropy effect. 

For a single-crystal slab of ferromagnetic material 
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with crystal axis arbitrarily oriented with respect to 
the axis of uniaxial strain, the strain tensor can be 
written 

(8) 

where nJ is a component of a unit vector directed along 
the axis of uniaxial strain. e= (Po / p) -1 is the strain 
along this axis, where Po and p are the initial and final 
densities, respectively. The magnetoelastic energy 
[Eq. (6)1 becomes 

Eme = ebjJklnjnJO!kO! I' 

This can be written 

Em. = CklO!kO! I' 

where 

(9) 

(10) 

Ckl = ebjJklnjnJ' (11) 

This manipulation is very convenient since it allows the 
familiar techniques developed for analyzing symmetric 
second-rank tensors to be used in analyzing the fourth­
rank magnetoelastic tensor for a given state of uniaxial 
strain. For cubic symmetry the matrix array repre­
senting the second rank tensor in Eq. (11) becomes 

(b1n~ b2n1n2 b2n1ns~ 
[C k,l = e b2n1n2 b1~ b2n2ns. 

b2n1na b2nans b1n; 

(12) 

The principal axes of the representation quadric for 
this second-rank symmetric tensor give the easy and 
hard directions of magnetization produced by the in­
duced uniaxial strain. The eigenvalues are the mag­
netoelastic energies when the magnetization vector lies 
along the corresponding principal axes. 17 It should be 
noted that the principal axes depend only on the direc­
tion of the axis of uniaxial strain with respect to the 
crystal axes and not on the magnitude of strain since 
the eigenvectors will be functions of the nj and indepen­
dent of e. Of more interest is the fact that the axis of 
uniaxial strain will not, in general, coincide with a 
principal axis and hence will not define an easy or hard 
direction of magnetization. There are special cases, 
such as uniaxial strain along a (100) or a (111) axis, in 
which the strain axis and a principal axis coincide. This 
has the following implication: First-order conventional 
magnetoelastic theory16 predicts that in any finite mag­
netic field, strain-induced anisotropy cannot produce 
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FIG. 4. Surface pole distribution for magneto static potential 
problem. Ther e is pole distribution on both upper and lower 
surfaces . 
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FIG. 5. Predicted mag­
netization curve. The 
magnetization M deter­
mines the extent of the 
shock-induced demag­
netization that would 
occur for a specimen 
initially saturated in a 
field HeO' 

total shock demagnetization except in the special cases 
stated previously. This can be seen in the following 
way: The geometry of the shock demagnetization prob­
lem (Fig. 1) defines an axis of uniaxial strain with a 
perpendicular applied field. The single-crystal axes 
may be arbitrarily oriented. The direction of easy mag­
netization will not, in general, coincide with the axis of 
uniaxial strain. In the limit of vanishingly small applied 
field He' the magnetization will lie along this easy axis. 
Its direction along this axis will be such that - He . M .. is 
minimal. This will give a nonzero component of M in 
the direction of He' In a poly crystalline material all 
orientations of crystallites occur . Each will contribute 
to the transverse magnetization. This may explain, at 
least in part, why shock-induced demagnetization ob­
served by Shaner and RoyceS in YIG was less than ex­
pected. 

ill. DOMAIN-THEORY ANALYSIS 

In the domain-theory analysis of shock-induced anisot­
ropy, two single-crystal problems will be treated con­
currently. These will be called the (100) problem and 
the (111) problem. The (100) problem corresponds to a 
state of uniaxial strain along a (100) axis with a perpen­
dicular applied field. The (111) problem corresponds to 
a state of uniaxial strain along a (111) axis with a per­
pendicular applied field. These two problems have been 
chosen for the following reasons: In single-crystal mag­
netostriction, inverse of the effect considered in the 
present work, results are interpreted in terms of ~oo 
and ~lll' These magnetostriction constants represent 
total strain when a crystal is magnetized from the de­
magnetized state to saturation along the (100) and (111) 
axes . The problems considered in the present work are 
the complementary analogs of these inverse magneto­
striction problems. The results clearly exhibit charac­
teristic behavior of the shock-induced anisotropy effect. 
Also these results will be used in determining poly­
crystalline magnetic behavior. 

There is an inherent weakness in ferromagnetic domain 
theory. A basic postulate of the theory is the existence 
of domain walls. However, the theory does not provide 
a means for determining unambiguously the domain 
structure for a given problem. The procedure is to as­
sume possible domain structures consistent with other 
requirements of the problem and select from these, by 
energy considerations, the most likely domain struc­
ture. In Fig. 2, models for domain structures consis­
tent with requirements of the present problem are 

shown. Domain walls normal to the strain axis are not 
expected. This is because the variation in the magneti­
zation direction through the domain wall cannot be made 
without allowing V . M to deviate from zero. V· M * ° in 
the domain wall implies magnetic volume poles in the 
wall which would contribute excessively to the demag­
netizing energy. This would be energetically unfavor­
able. That V . M = ° through the domain wall is a postu­
late of ferromagnetic domain theory. Also, domains of 
closure are not expected due to the very large induced 
anisotropy energy . 

A. Induced Anisotropy Energy 

The induced anisotropy energies for the (100) problem 
and the (111) problem will be obtained in this section. 
The energy will be obtained for the region within do­
mains and within the walls through which the transition 
between adj acent domains is made . This will be done 
for walls of the form shown in Figs. 2 (a) and 2 (b). 

Consider first the (100) problem and the domain geom­
etry in Fig. 2(a). Transform Eq. (7) to polar coordi­
nates using Eq. (8), 

a 1 = sine coscJ> , a 2 = sine sincJ> , and as = cos e. (13) 

The induced anisotropy energy in a domain is easily ob­
tained: 

(14) 

To obtain the induced anisotropy energy in the wall the 
variation in M through the wall must be considered. 
The requirement that V· M = 0 through the wall is equiv­
alent to demanding that e be constant through the wall. 
This requires the tranSition between adjacent domains 
to proceed by a rotation of cJ> from ° to 11. The energy in 
the wall is 

E~~) (wall) = b1 e sin2 e cos2 cJ> . (15) 

In determining Eqs. (14) and (15) from the geometry in 
Fig. 2(a), it should be pointed out that within a domain 
M lies in the xz plane and, therefore, My=O or cJ>=0; 
while in the wall, V· M= ° implies aM.! az = ° and, 
therefore, My *0 which implies cJ> *0, i.e., M rotates 
out of the xz plane in keeping V . M = O. 

A slightly more difficult analysis gives for the (111) 
problem 

and 

(16) 

(17) 

This is most easily accomplished by subjecting the en­
ergy expression in Eq. (7) to a coordinate transforma­
tion such that the new x axis lies along the old (111) di­
rection. Since the forms of the energies are the same 
for the (100) problem and the (111) problem we will 
write 

(18) 

and 

(19) 
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where b = bl or b2 for the (100) problem or the (111) 
problem, respectively. 

Consider the domain configuration in Fig. 2(b). Again 
the energy in the domain is 

Em.(domain) = be sin2 
(}. 

The transition through the wall proceeds in the (xz) 
plane by varying continuously from - (} to (J. The energy 
in the wall is 

(20) 

Equations (18)-(20) are the primary equations derived 
in this section. 

B. Exchange Energy 

Within the concepts of ferromagnetic domain theory, the 
exchange energy is believed to reside only in the do­
main walls or transition regions between adjacent do­
mains. The method for obtaining this domain-wall en­
ergy is through a Landau-Lifshitz domain-wall calcula­
tion .18 This has been fully developed in the litera­
ture lO ,15 and will be described only briefly here. The 
method consists of writing a one-dimensional integral 
expression for the energy in the transition region be­
tween domains. The terms which contribute to the do­
main-wall energy are the exchange energy [Eq. (4)] 
and the excess crystalline or magnetoelastic anisotropy 
energy incurred by the transition through the wall. It is 
assumed that V· M=O «(}=const) holds through the 
wall. This one-dimensional integral energy expression 
is minimized by variational calculus. The result pre­
dicts that for all points within the wall the exchange en­
ergy is equal to the excess anisotropy energy. It is 
found that the domain-wall energy per unit area is given 
bylS 

The crystal anisotropy energy has not been considered. 
A is again the exchange constant and ~l and ~2 are the 
azimuthal orientation of the magnetization in the adja­
cent domains separated by the wall. 

Energies for domain walls oriented as shown in Figs. 
2(a) and 2(b) will be called O! and ~, respectively. For 
Fig. 2(a), using Eqs. (18) and (19) with Eq. (21), gives 

O! =2(A / be / )1/2 sin2(} loW sin~ d~ 

or 

a!, =4(A / be /)1/2 sin2(}. (22) 

For Fig. 2(b), using Eqs. (18) and (20) with Eq. (21), 
gives 

a~ = 2(A / be /)1/2 i: (sin2 (J _ sin2 ~)l /2 d~. 

Making the substitution 

sin ~ = sin 8 sinx = a sinx 

and using the identity 

cos2x=(1- a-2) +a-2(I_a2 sin2x), 
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one obtains 

a!=4(A/be/)1/2(a 2 _1)[w/2 (1 2ax. 2 )1/2 
o -a SIn x 

This is 

a!=4(A/be/)1/2[(a 2 -1)K(a, h)+E(a, ~1T)], 

where K and E are complete elliptic integrals of the 
first and second kind and a=sin(J. 

(23) 

a~ and a! are compared in Fig. 3. It is seen that the do­
main model considered in Fig. 2(b) yields a slightly 
lower energy. In actual crystalline material imperfec­
tions such as dislocation, impurities, etc., can signi­
ficantly alter the domain-wall energy. For this reason, 
it ~s believed that the slight energy difference is not 
substantial enough to favor the domain structure in Fig. 
2(b) over that in Fig. 2(a). Alternatively, a Boltzmann 
distribution predicts, at normal temperatures, roughly 
an even distribution of domain walls of both orienta­
tions. From this, one may conclude that ferromagnetic 
domain theory suggests a needle- or sliver-shaped do­
main structure oriented along the axis of uniaxial strain 
will nucleate behind the shock front. A model for this 
structure is shown in Fig. 2(c). 

Due to the much Simpler form of Eq. (22), the approxi­
mation 

a! "" a~ = aw=4(A / be /)1/2 sin2 8 

will be made. An expression for the effective exchange 
energy density in Eq. (1) can be obtained by dividing 

by the domain dimension D shown in Fig. 2(c). This 
gives 

Eox = 2a",/D 

or 

Eex = [8(A / be /)1 /2/D] sin2(J. 

C. Demagnetizing Energy 

(24) 

The demagnetizing energy can be obtained by solving 
the magnetostatic boundary value problem for the mag­
netic surface pole distribution on two surfaces sepa­
rated a distance L as indicated in Fig. 4. The solution 
requires only a slight variation on a problem already 
solved by Kittel. 19 The result is 

Ed =1.1(DM:/ L)sin2 8. (25) 

L is the slab thickness, D is the domain dimension, and 
M. is the saturation magnetization. 

D. Total Energy 

From the results of this section, Eq. (1) for the total 
thermodynamic energy can now be explicitly written 

E(D, 8)= -Mjiecos8 +besin2 8 + 1. 1 (DM;/L) sin2 8 

+[8(A /be/}l/2/D] sin2 8, (26) 

where cos 8 is the component of the magnetization in the 
direction of the applied field. 
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FIG. 6. Magnetization curves for the (100) and 
the (111) problem in YrG. 

IV. EQUIUBRIUM MAGNETIC BEHAVIOR 

Equilibrium thermodynamics requires that the energy 
expression E(D, 8) be a minimum with respect to a 
variation of the internal coordinates D and 8. Consider 
the domain-width parameter first. Minimizing with 
respect to D gives 

aE -11 M : . 28 
aD- . L sm 8(A 1 be 1)112 . 28 0 Ir sm = . 

This yields an expreSSion for the domain width: 

D = [8L(A 1 be 1 )1/2 /1.1M;]l/2. (27) 

This can be substituted back into Eq. (26) giving 

E(8)= -MjIecos8 + besin2 8 

+ 2[8. 8M; (A 1 be 1 )1/2/L]1/2 sin2 8 

or 

E(8) = - MjIecos8 + besin2 8 + yl e 11/4sin2 8, 

where 

Y= 2[8 . 8M; (A 1 b 1 )1/2/LJl/2. 

(28) 

The last term in Eq. (28) will be called the equilibrium 
exchange and demagnetizing energy. Note that it in­
creases as the fourth root of the strain. 

From Eq. (28) the magnetization curve can be obtained. 
The requirement of equilibrium yields two solutions: 

sin8=0 (29) 

or 

(30) 

The correct solution for a given applied field is deter­
mined from the requirement that the equilibrium point 
be a minimum. Two cases occur which are determined 
by the Sign of f3 == (be + y 1 e 11/4). The sign depends on the 
strain e (usually negative in shock-wave experiments) 
and the magnetoelastic constant b. y is always positive. 
For the first case «(:3 < 0), the magnetization is 

M/Ms=1, 

=-(M/2f3}He , 

He> -2(:3/Ms 

He < -2f3/Ms' (31) 

The form of the magnetization curve is shown in Fig. 5. 
Shock-induced demagnetization is expected for f3 < O. 
For example, referring to Fig. 5, a material initially 
in magnetic saturation in a transverse field HeO would 
suffer a reduction in magnetization to a value M after 
passage of the shock wave. For the second case (f3 > 0), 
the axis of uniaxial strain defines a hard direction of 
magnetization. All perpendicular axes are equivalent 
easy directions and the magnetization curve predicted 
by this simple treatment will be a discontinuous jump 
of 2Ms on reversal of the applied field. This case does 
not, however, lead to shock demagnetization and, 
therefore, is not of interest in the present context. 

V. DISCUSSION 

Results of Sec. IV will be considered using the material 
properties of yttrium iron garnet. This ferrimagnetic 
ceramic has received attention in previous shock-in­
duced anisotropy work because of the convenient mag­
nitudes of its material properties. A rough value for 
the exchange constant of YIG obtained from molecular 
field theory is A'" 3 X 10-7 erg/ cm. At a strain of - 0.01 
in YIG, which corresponds to about 25-kbar shock 
pressure, the predicted domain width from Eq. (27) is 
20 J,J.. This is in agreement with other work. 7 

The equilibrium exchange and demagnetizing energy 
[last term in Eq. (28)] is observed to increase as the 
fourth root of the strain while the induced anisotropy 
energy increases linearly with the strain. This implies 
that the eC{u.ilibrium exchange and demagnetizing energy 
would assume decreasing importance with increasing 
strain. For a strain of -0.01, the equilibrium ex­
change and demagnetizing energy is about 2% of the in­
duced anisotropy energy. This justifies the approxima­
tion of ignoring this energy term in predicting magnetic 
behavior in the region of large strain as has been done 
in previous work.2 ,5,7 It is worth noting that this approx­
imation does not extedd to all materials. In iron this 
neglected term represents a Significant part of the en­
ergy even up to the elastic limit of the material. 

Magnetization curves for the (100) problem and the (111) 
in YIG are shown in Fig. 6. They will be referred to in 
the following article. 11 The equilibrium exchange and 
demagnetizing energy has been ignored. The curves are 
plotted against the parameter H / e. Magnetization 
curves for any strain are expected to be self-similar 
against this parameter. 

VI. SUMMARY 

(i) The fourth-rank magnetoelastic tensor for a given 
state of uniaxial strain can be analyzed with the famil­
iar techniques available for second-rank symmetric 
tensors. It was found that the axis of uniaxial strain 
defined an easy or hard direction of magnetization only 
in special cases of particular crystal orientations such 
as uniaxial strain along the (100) or (111) directions or 
in the case of magnetoelastic isotropy. 

(ii) The established methods of ferromagnetic domain 
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theory are consistently applied to the problem of shock­
induced anisotropy in ferromagnetic material. (100)­
and (111)-oriented single crystals are considered. 
Using a Landau-Lifshitz domain-wall calculation, wall 
energies for wall normals parallel and perpendicular 
to the applied field are obtained. The wall energies are 
found to be approximately the same, the latter being 
slightly lower. From this, it is concluded that a nee­
dle- or sliver-shaped domain structure oriented along 
the axis of uniaxial strain is most likely to nucleate be­
hind the shock front. 

(iii) A total magnetic energy expression is determined 
for the (100) and the (111) problems. Assuming the 
validity of equilibrium thermodynamics behind the shock 
front, expressions for the domain size and the magneti­
zation curves are obtained. 

(iv) The equilibrium exchange and demagnetizing energy 
is found to increase as the fourth root of the strain 
while the induced anisotropy energy increases linearly 
with the strain. Thus, the former term assumes de­
creasing importance with increasing shock strength. It 
is found to be negligible in the region of large strain in 
yttrium iron gar~et, and previous treatments2 ,5,7 of the 
shock-induced anisotropy effect, in which the exchange 
and demagnetizing energy was ignored, are justified in 
this assumption. 

*Based on a thesis submitted to the Department of Physics, 
Washington State University, Pullman, Wash., in partial 
fulfillment of the Doctor of Philosophy degree, 1971. Work 
supported by the Air Force Office of Scientific Research, 
Grant No. AFOSR 69-1758. 
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